Đề thi sát hạch học sinh giỏi Toán Lớp 7 - Năm học 2013-2014 - Trường THCS Hà An

Đề thi sát hạch học sinh giỏi Toán Lớp 7 - Năm học 2013-2014 - Trường THCS Hà An

Câu 2. (5,0 điểm)

1) Cho a, b, c là ba số thực khác 0, thoả mãn điều kiện: . Hãy tính giá trị của biểu thức .

2) Ba lớp 7A, 7B, 7C cùng mua một số gói tăm từ thiện, lúc đầu số gói tăm dự định chia cho ba lớp tỉ lệ với 5:6:7 nhưng sau đó chia theo tỉ lệ 4:5:6 nên có một lớp nhận nhiều hơn dự định 4 gói. Tính tổng số gói tăm mà ba lớp đã mua.

Câu 3. (4,0 điểm)

1) Tìm giá trị nhỏ nhất của biểu thức A = với x là số nguyên.

2) Tìm nghiệm nguyên dương của phương trình .

Câu 4. (6,0 điểm)

 Cho =600 có tia phân giác Az . Từ điểm B trên Ax kẻ BH vuông góc với Ay tại H, kẻ BK vuông góc với Az và Bt song song với Ay, Bt cắt Az tại C. Từ C kẻ CM

vuông góc với Ay tại M . Chứng minh :

 a ) K là trung điểm của AC.

 b ) KMC là tam giác đều.

 c) Cho BK = 2cm. Tính các cạnh AKM.

 

doc 4 trang bachkq715 6970
Bạn đang xem tài liệu "Đề thi sát hạch học sinh giỏi Toán Lớp 7 - Năm học 2013-2014 - Trường THCS Hà An", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
PHÒNG GD&ĐT THỊ XÃ QUẢNG YÊN
TRƯỜNG THCS HÀ AN
ĐỀ THI SÁT HẠCH HỌC SINH GIỎI CỤM LẦN 4
NĂM HỌC 2013-2014
MÔN THI: TOÁN 7
 Thời gian làm bài:120 phút
Câu 1. (4,0 điểm)
M = 
Tìm x, biết: .
Câu 2. (5,0 điểm)
 Cho a, b, c là ba số thực khác 0, thoả mãn điều kiện: . Hãy tính giá trị của biểu thức .
2) Ba lớp 7A, 7B, 7C cùng mua một số gói tăm từ thiện, lúc đầu số gói tăm dự định chia cho ba lớp tỉ lệ với 5:6:7 nhưng sau đó chia theo tỉ lệ 4:5:6 nên có một lớp nhận nhiều hơn dự định 4 gói. Tính tổng số gói tăm mà ba lớp đã mua.
Câu 3. (4,0 điểm)
Tìm giá trị nhỏ nhất của biểu thức A = với x là số nguyên.
Tìm nghiệm nguyên dương của phương trình .
Câu 4. (6,0 điểm) 
 Cho =600 có tia phân giác Az . Từ điểm B trên Ax kẻ BH vuông góc với Ay tại H, kẻ BK vuông góc với Az và Bt song song với Ay, Bt cắt Az tại C. Từ C kẻ CM 
vuông góc với Ay tại M . Chứng minh :
 a ) K là trung điểm của AC.
 b ) KMC là tam giác đều.
 c)	Cho BK = 2cm. Tính các cạnh AKM.
Câu 5. (1,0 điểm) 
Cho ba số dương 0abc1 chứng minh rằng: 
--------------Hết----------------
Cán bộ coi thi không giải thích gì thêm.
Họ và tên thí sinh: .................................................................Số báo danh:.......................
PHÒNG GD&ĐT THỊ XÃ QUẢNG YÊN
TRƯỜNG THCS HÀ AN
ĐỀ THI SÁT HẠCH HỌC SINH GIỎI CỤM
LẦN 4
NĂM HỌC 2013-2014
MÔN THI: TOÁN 7
 Thời gian làm bài:120 phút
Câu
Nội dung
Điểm
Câu 1
(4 điểm)
1) Ta có: 
KL: ..
0.5đ
0.5đ
0.5đ
0.5đ
2) vì nên (1) => hay 
+) Nếu x 1 thì (*) = > x -1 = 2 => x = 3 
+) Nếu x x -1 = -2 => x = -1
KL: .
0.5đ
0.5đ
0.5đ
0.5đ
Câu 2
(5 điểm)
1)
+Nếu a+b+c 0
 Theo tính chất dãy tỉ số bằng nhau ,ta có:
= = 1
mà = 2
=> =2
Vậy B ==8
0.25đ
0.25đ
0.25đ
0.25đ
+Nếu a+b+c = 0
 Theo tính chất dãy tỉ số bằng nhau ,ta có:
= = 0
mà = 1
=> =1
Vậy B ==1
0.25đ
0.25đ
0.25đ
0.25đ
2) Gọi tổng số gói tăm 3 lớp cùng mua là x ( x là số tự nhiên khác 0)
Số gói tăm dự định chia chia cho 3 lớp 7A, 7B, 7C lúc đầu lần lượt là: a, b, c
Ta có: 	(1)
Số gói tăm sau đó chia cho 3 lớp lần lượt là a’, b’, c’, ta có:
	(2)
So sánh (1) và (2) ta có: a > a’; b=b’; c < c’ nên lớp 7C nhận nhiều hơn lúc đầu
Vây: c’ – c = 4 hay 
Vậy số gói tăm 3 lớp đã mua là 360 gói.
0,5 đ
0,5đ
0,25đ
0,5đ
0,5đ
0,5đ
0,25đ
Câu 3
(4 điểm)
1) Ta có: 
Dấu “=” xảy ra khi 
KL: ..
0,5đ
0,5đ
0,5đ
0,5đ
2) Vì x,y,z nguyên dương nên ta giả sử 1 xyz
Theo bài ra 1 = ++ + + = 
 => x 2 3 => x = 1
Thay vào đầu bài ta có => y – yz + 1 + z = 0 
 => y(1-z) - ( 1- z) + 2 =0
 => (y-1) (z - 1) = 2
TH1: y -1 = 1 => y =2 và z -1 = 2 => z =3
TH2: y -1 = 2 => y =3 và z -1 = 1 => z =2
Vậy có hai cặp nghiệp nguyên thỏa mãn (1,2,3); (1,3,2)
0,25đ
0,5đ
0,5đ
0,25đ
0,25đ
0,25đ
Câu 4
(6 điểm)
V ẽ h ình , GT _ KL 
a, ABC cân tại B do và BK là đường cao BK là đường trung tuyến
 K là trung điểm của AC 
b, ABH = BAK ( cạnh huyền + góc nhọn )
 BH = AK ( hai cạnh t. ư ) mà AK = AC
 BH = AC
 Ta có : BH = CM ( t/c cặp đoạn chắn ) mà CK = BH = AC CM = CK MKC là tam giác cân ( 1 )
Mặt khác : = 900 và = 300
 = 600 (2)
Từ (1) và (2) MKC là tam giác đều
c) Vì ABK vuông tại K mà góc KAB = 300 => AB = 2BK =2.2 = 4cm
Vì ABK vuông tại K nên theo Pitago ta có:
 AK = 
Mà KC = AC => KC = AK = 
KCM đều => KC = KM = 
Theo phần b) AB = BC = 4
 AH = BK = 2
 HM = BC ( HBCM là hình chữ nhật)
=> AM = AH + HM = 6 
0,25đ
1đ
1đ
0,5đ
0,25đ
0,25đ
0,25đ
0,5đ
0,25đ
0,25đ
0,25đ
0,25đ
0,25đ
0,5đ
0,25đ
Câu 5
(1 điểm)
Vì nên:
 (1)
Tương tự: (2) ; (3) 
Do đó: (4)
Mà (5)
Từ (4) và (5) suy ra: (đpcm)
0,25đ
0,25đ
0,25đ
0,25đ
Lưu ý: - Các tổ cần nghiên cứu kỹ hướng dẫn trước khi chấm.
 - Học sinh làm bài các cách khác nhau mà đúng thì vẫn cho điểm tối đa.
 - Bài hình không có hình vẽ thì không chấm. 
 - Tổng điểm của bài cho điểm lẻ đến 0,25đ ( ví dụ : 13,25đ , 14,5đ, 26,75đ).

Tài liệu đính kèm:

  • docde_thi_sat_hach_hoc_sinh_gioi_toan_lop_7_nam_hoc_2013_2014_t.doc