Giáo án Tự chọn Toán 7 - Chương trình cả năm
TIẾT 21 - 24: QUAN HỆ GÓC VÀ CẠNH ĐỐI DIỆN TRONG MỘT
TAM GIÁC.
A. Mục tiêu:
- Nắm vững nội dung hai định lý, vận dụng được chúng trong những tình huống cần thiết, hiểu được phép chứng minh của định lí 1.
- Biết vẽ hình đúng yêu cầu và dự đoán nhận xét các tính chất qua hình vẽ.
- Biết diễn đạt một định lí thành một bài toán với hình vẽ, giả thiết và kết luận.
B. Chuẩn bị: Bảng phụ ghi đề bài.
C. Bài tập
Tiết 21:
Bài 1:
a. So sánh các góc của tam giác PQR biết rằng PQ = 7cm; QR = 7cm; PR = 5cm
b. So sánh các cạnh của tam giác HIK biết rằng H = 750; K = 350
Bạn đang xem 20 trang mẫu của tài liệu "Giáo án Tự chọn Toán 7 - Chương trình cả năm", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
BÀI GIẢNG TỰ CHỌN – TOÁN 7 CHỦ ĐỀ 1: SỐ HỮU TỈ - SỐ THỰC; ĐƯỜNG THẲNG VUÔNG GÓC VÀ ĐƯỜNG THẲNG SONG SONG HÀM SỐ VÀ ĐỒ THỊ; TAM GIÁC Tiết 1; 2: CỘNG, TRỪ, NHÂN, CHIA SỐ HỮU TỈ A. Mục tiêu: - Học sinh nắm vững các quy tắc cộng, trừ số hữu tỉ, biết quy tắc “chuyển vế” trong Q. - Học sinh nắm vững các quy tắc nhân, chia số hữu tỉ - Có kĩ năng làm các phép tính cộng, trừ, nhân, chia hai số hữu tỉ nhanh, đúng B. Chuẩn bị: Bảng phụ ghi đề bài C. Bài tập: Tiết 1: Bài 1: Cho hai số hữu tỉ và (b > 0; d > 0) chứng minh rằng: Nếu thì a.b < b.c Nếu a.d < b.c thì Giải: Ta có: a. Mẫu chung b.d > 0 (do b > 0; d > 0) nên nếu: thì da < bc b. Ngược lại nếu a.d < b.c thì Ta có thể viết: Bài 2: a. Chứng tỏ rằng nếu (b > 0; d > 0) thì b. Hãy viết ba số hữu tỉ xen giữa và Giải: a. Theo bài 1 ta có: (1) Thêm a.b vào 2 vế của (1) ta có: a.b + a.d < b.c + a.b a(b + d) < b(c + a) (2) Thêm c.d vào 2 vế của (1): a.d + c.d < b.c + c.d d(a + c) < c(b + d) (3) Từ (2) và (3) ta có: b. Theo câu a ta lần lượt có: Vậy Bài 2: Tìm 5 số hữu tỉ nằm giữa hai số hữu tỉ và Ta có: Vậy các số cần tìm là: Bài 3: Tìm tập hợp các số nguyên x biết rằng Ta có: - 5 < x < 0,4 (x Z) Nên các số cần tìm: x Bài 4: Tính nhanh giá trị của biểu thức P = = Bài 5: Tính M = = = Tiết 2: Bài 6: Tìm 2 số hữu tỉ a và b biết A + b = a . b = a : b Giải: Ta có a + b = a . b a = a . b = b(a - 1) (1) Ta lại có: a : b = a + b (2) Kết hợp (1) với (2) ta có: b = - 1 ; có x = Vậy hai số cần tìm là: a = ; b = - 1 Bài 7: Tìm x biết: a. b. x = x = x = x = Bài 8: Số nằm chính giữa và là số nào? Ta có: vậy số cần tìm là Bài 9: Tìm x biết a. b. c. và x < Bài 10: Chứng minh các đẳng thức a. ; b. a. ; VP = b. VP = Bài 11: Thực hiện phép tính: = TIẾT 3; 4; 5: ĐƯỜNG THẲNG VUÔNG GÓC, SONG SONG, CẮT NHAU A. Mục tiêu: - Học sinh nắm được định nghĩa và tính chất về hai góc đối đỉnh. - Học sinh giải thích được hai đường thẳng vuông góc với nhau thế nào là đường trung trực của một đoạn thẳng. - Rèn luyện kĩ năng sử dụng thước thẳng, ê ke, đo độ để vẽ hình thành thạo chính xác. Bước đầu tập suy luận. B. Chuẩn bị: Bảng phụ có ghi sẵn đề bài C. Bài tập Tiết 3: Bài 1: Chứng minh rằng hai tia phân giác của hai góc đối đình là hai tia đối nhau? Giải: Vẽ Ot là tia phân giác của góc xOy t y Ta có: Oz và Ot là hai tia phan giác của hai z góc kề bù xOy và yOx/ do đó = 900 = 1v (1) Mặt khác Oz/ và Ot là hai tia phân giác x/ O x của hai góc kề bù y/Ox/ và x/ Oy do đó = 900 = 1v (2) Lấy (1) + (2) = + = 900 + 900 = 1800 x/ y/ Mà hai tia Oz và Oz/ là không trùng nhau Do đó Oz và Oz/ là hai tia phân giác đối nhau. Bài 2: Cho hai góc kề bù xOy và yOx/. Vẽ tia phân giác Oz của trên nửa mặt phẳng bờ xx/ có chưa Oy, vẽ tia Oz/ vuông với Oz. Chứng minh rằng tia Oz/ là tia phân giác của . t z/ y Giải: Vẽ tia Ot là tia phân giác của z hai tia Oz và Ot lần lượt là hai tia phân giác của hai góc kề bù và do đó: Oz Ot x/ O x có: Oz Oz/ (gt) Nên hai tia Ot và Oz/ trùng nhau Vậy Oz/ là tia phân giác của . Bài 3: Cho hình vẽ a. và có phải là hai góc đối đỉnh không? x/ y b. Tính Giải: n m a. Ta có và không đối đỉnh (ĐN) b. Có (vì đối đỉnh) y/ x Bài 4: Trên hình bên có Tia Oc là tia phân giác của Tính: a c Giải: = 900 (gt) Mà (kề bù) Dođó: = 900 b Có Oc là tia phân giác của (gt) c/ Nên = 1800 - 450 = 1350 Vậy số đo của các góc là: Bài 5: Cho hai đường thẳng xx/ và y/ y cắt nhau tại O sao cho . Các tia Om và On là các tia phân giác của và . a. Các tia Om và On có phải là hai tia đối nhau không? b. Tính số đo của tất cả các góc có đỉnh là O. Giải: Biết: x/x yy/ = x/ y = 400 n n m m O a. Om và On đối nhau Tìm b. y/ x Giải: a. Ta có: Vì các góc và là đối đỉnh nên = Vì Om và On là các tia phân giác của hai góc đối đỉnh ấy Nên 4 nửa góc đó đôi một bằng nhau và Ta có: vì hai góc và là kề bù nên hay (vì mOx = nOx/) tức là vậy hai tia Om và On đối nhau b. Biết: nên ta có Tiết 4: Bài 6: Cho hai góc AOB và COD cùng đỉnh O, các cạnh của góc này vuông góc với các cạnh của góc kia. Tính các góc AOB cà COD nếu hiệu giữa chúng bằng 900. Giải: Ở hình bên có nằm trong A và giả thiết có: O C ta lại có: và suy ra Vậy B D suy ra ; AOB = 1350 Bài 7: Hãy điền vào các hình sau số đo của các góc còn lại và giải thích vì sao? A D a c B b d C Bài 8: Cho góc xOy và tia Oz nằm trong góc đó sao cho . Tia phân giác Ot của thoả mãn Ot Oy. Tính số đo của góc . A. = 600; B = 900; C = 1200; D = 1500 Giải: Vì: x t z Mặt khác ta lại có: O y Thay (1) vào (2) ta được: xOy = 5. 300 = 1500 Vậy ta tìm được Bài 9: Cho hai góc xOy và x/ Oy/, biết Ox // O/x/ (cùng chiều) và Oy // O/y/ (ngược chiều). Chứng minh rằng xOy + x/Oy/ = 1800 Giải: Nối OO/ thì ta có nhận xét y/ x/ Vì Ox // O/x/ nên O1 = O/1 (đồng vị) x Vì Oy // O/y/ nên O/2 = O2 (so le) khi đó: xOy = O1 + O2 = O/1 + O/2 = 1800 - x/O/y/ xOy + x/O/y/ = 1800 y Tiết 5: A B Bài 10: Trên hình bên cho biết BAC = 1300; ADC = 500 Chứng tỏ rằng: AB // CD C D Giải: Vẽ tia CE là tia đối của tia CA E Ta có: ACD + DCE = 1800 (hai góc ACD và DCE kề bù) DCE = 1800 - ACD = 1800 - 500 = 1300 Ta có: DCE = BAC (= 1300) mà DCE và BAC là hai góc đồng vị Do đó: AB // CD Bài 11: Trên hình bên cho hai đường thẳng x A y xy và x/y/ phân biệt. Hãy nêu cách nhận biết xem hai đường thẳng xy và x/y/ song song hay cắt nhau bằng dụng cụ thước đo góc x/ B y/ Giải: Lấy A ; B x/y/ vẽ đường thẳng AB. Dùng thước đo góc để đo các góc xAB và ABy/. Có hai trường hợp xảy ra * Góc xAB = ABy/ Vì xAB và ABy/ so le trong nên xy // x/y/ * xAB ABy/ Vì xAB và ABy/ so le trong nên xy và x/y/ không song song với nhau. Vậy hai ssường thẳng xy và x/y/ cắt nhau Bài 12: Vẽ hai đường thẳng sao cho a // b. Lấy điểm M nằm ngoài hai đường thẳng a, b. Vẽ đường thẳng c đi qua M và vuông góc với a và b. Giải: Ta có: c M A a M B b c Bài 13: Cho góc xOy một đường thẳng cắt hai cạnh của góc đó tại các điểm A, B (hình bên) a. Các góc A2 và B4 có thể bằng nhau không? Tại sao? b. Các góc A1 và B1 có thể bằng nhau không? Tại sao? Bài 14: Cho hai điểm A, B từ A và B kẻ hai đường thẳng a, b cùng vuông góc với đoạn thẳng AB. Hai đường thẳng đó có thể cắt nhau tại một điểm không? Tại sao? Bài 15: Cho õ là tia phân giác của góc vuông aOb, Ox/ là tia đối của tia Ox. a. Chứng minh: x/Ob = x/Oa = 1350 b. Cho Ob/ là tia đối của toa Ob. Chứng minh: b/Ob = aOx. TIẾT 6; 7: LUỸ THỪA - TỈ LỆ THỨC A. Mục tiêu: - Học sinh nắm được luỹ thừa với số mũ tự nhiên - luỹ thừa của luỹ thừa. - Tích và thương của hai luỹ thừa cùng cơ số. - Luỹ thừa của một tích - thương. - Nắm vững hai tính chất của tỉ lệ thức. Thế nào là tỉ lệ thức. Các hạng tử của tỉ lệ thức. - Bước đầu biết vận dụng các tính chất của tỉ lệ thức vào giải bài tập. - Rèn kĩ năng áp dụng các quy tắc về luỹ thừa để tính giá trị của biểu thức luỹ thừa, so sánh....... B. Chuẩn bị: Bảng phụ ghi sẵn đề bài: C. Bài tập. Tiết 6: Bài 1: Viết số 25 dưới dạng luỹ thừa. Tìm tất cả các cách viết. Ta có: 25 = 251 = 52 = (- 5)2 Bài 2: Tìm x biết a. = 0 b. (2x - 1)3 = - 8 = (- 2)3 2x - 1 = - 2 2x = - 1 x = - c. Bài 3: So sánh 2225 và 3150 Ta có: 2225 = (23)75 = 875; 3150 = (32)75 = 975 Vì 875 < 975 nên 2225 < 3150 Bài 4: Tính a. 3-2 . b. = c. Bài 5: a. Hiệu của hai số và là: A. 0 B. ; C. ; D. ; E. Không có Giải: Ta có: - = . Vậy D đúng b. thì x bằng A. 1; B. ; C. ; D. ; E. Giải: Ta có: x = 1 Vậy A đúng. Tiết 7: Bài 6: Lập tất cả các tỉ lệ thức có thể được từ các đẳng thức sau: a. 7. (- 28) = (- 49) . 4 b. 0,36 . 4,25 = 0,9 . 1,7 hay Bài 7: Chứng minh rằng từ đẳng thức a. d = b.c (c, d 0) ta có tỉ lệ thức Giải: Chia cả hai vế của đẳng thức ad = bc cho cd (c.d 0) ta được Bài 8: Cho a, b, c, d , từ tỉ lệ thức hãy suy ra tỉ lệ thức Giải: Đặt = k thì a = b.k; c = d.k Ta có: (1) (2) Từ (1) và (2) suy ra: Bài 9: Chứng minh rằng: Từ tỉ lệ thức (b + d 0) ta suy ra Giải: Từ a.d = b.c nhân vào hai vế với a.b Ta có: a.b + a.d = a.b + b.c a(b + d) = b(a + c) Bài 10: Tìm x trong các tỉ lệ thức sau: a. b. c. Giải: a. 0,2x = 4 b. 0,01x. c. Bài 11: Tìm x biết a. (2x + 3)(10x + 2) = (5x + 2)(4x + 5) 2x2 + 4x + 30x + 6 = 20x2 + 25x + 8x + 10 34x + 6 = 33x + 10 x = 4 b. (3x - 1)(5x - 34) = (40 - 5x)(25 - 3x) 15x2 - 102x - 5x + 34 = 1000 - 120x - 125x + 15x 15x2 - 107x + 34 = 1000 - 245x + 15x2 138x = 996 x = 7 CHỦ ĐỀ 4: TAM GIÁC A. Mục tiêu: - Học sinh nắm được ba trường hợp bằng nhau của tam giác (c.c.c); (c.g.c); (g.c.g). - Rèn kĩ năng vẽ hình của ba trường hợp bằng nhau của tam giác. - Rèn kĩ năng sử dụng thước kẻ, compa, thước đo độ để vẽ các trường hợp trên. - Biết sử dụng các điều kiện bằng nhau của tam giác để chứng minh hai tam giác bằng nhau. B. Chuẩn bị: C. Bài tập Tiết 8: Bài 1: Cho tam giác EKH có E = 600, H = 500. Tia phân giác của góc K cắt EH tại D. Tính EDK; HDK. K Giải: GT: ; E = 600; H = 500 Tia phân giác của góc K Cắt EH tại D KL: EDK; HDK E D H Chứng minh: Xét tam giác EKH K = 1800 - (E + H) = 1800 - (600 + 500) = 700 Do KD là tia phân giác của góc K nên K1 = K = Góc KDE là góc ngoài ở đỉnh D của tam giác KDH Nên KDE = K2 + H = 350 + 500 = 850 Suy ra: KDH = 1800 - KED = 1800 Hay EDK = 850; HDK = 950 Bài 2: Cho tam giác ABC có B = C = 500, gọi Am là tia phân giác của góc ngoài ở đỉnh A. Chứng minh Am // BC. GT: Có tam giác ABC; B = C = 500 A Am là tia phân giác của góc ngoài đỉnh A KL: Am // BC B C Chứng minh: CAD là góc ngoài của tam giác ABC Nên CAD = B + C = 500 + 500 = 1000 Am là tia phân giác của góc CAD nên A1 = A2 = CAD = 100 : 2 = 500 hai đường thẳng Am và BC tạo với AC hai góc so le trong bằng nhau A1 = C = 500 nên Am // BC Bài 3: 3.1. Cho ; AB = DE; C = 460. Tìm F. 3.2. Cho ; A = D; BC = 15cm. Tìm cạnh EF 3.3. Cho có AD = DC; ABC = 800; BCD = 900 a. Tìm góc ABD b. Chứng minh rằng: BC DC GT: ; AB = DE; C = 460. A = D; BC = 15cm ; AD = DC; ABC = 800; BCD = 900 KL: 3.1: F = ? 3.2:EF = ? 3.3: a. ABD = ? b. BC DC Chứng minh: 3.1: thì các cạnh bằng nhau, các góc tương ứng bằng nhau nên C = F = 460 3.2. Tương tự BC = EF = 15cm 3.3: a. nên ABD = DBC mà ABC = ABD + DBC nên ABC = 2ABD = 800 ABD = 400 b. nên BAD = BCD = 900 vậy BC DC Bài 4: a. Trên hình bên có AB = CD Chứng minh: AOB = COD. b. A D B C Có: AB = CD và BC = AD Chứng minh: AB // CD và BC // AD Giải: a. Xét hai tam giác OAB và OCD có AO = OC; OB = OD (cùng là bán kính đường tròn tâm (O) và AB = CD (gt) Vậy (c.c.c) Suy ra: AOB = COD b. Nối AC với nhau ta có: và hai tam giác này có: AB = CD, BC = AD (gt); AC chung nên (c.c.c) BAC = ACD ở vị trí só le trong Vậy BC // AD Tiết 9: Bài 5: Cho tam giác ABC vẽ cung tròn tâm A bán kính bằng BC. Vẽ cung tròn tâm C bán kính bằng BA chúng cắt nhau ở D (D và B nằm khác phía đối với AC) Chứng minh: AD // BC Giải: (c.c.c) A D ACB = CAD (cặp góc tương ứng) (Hai đường thẳng AD, BC tạo với AC hai góc so le trong bằng nhau). B C ACB = CAD nên AD // BC. Bài 6: Dựa vào hình vẽ hãy nêu đề toán chứng minh theo trường hợp (c.g.c) B y Giải: Cho góc xOy trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. O C m Gọi C là một điểm thuộc tia phân giác Om của xOy. Chứng minh: A x Bài 7: Qua trung điểm M của đoạn thẳng AB kẻ đường thẳng vuông góc với AB. Trên đường thẳng đó lấy điểm K. Chứng minh MK là tia phân giác của góc AKB. Giải: K AKM = BKM (cặp góc tương ứng) Do đó: KM là tia phân giác của góc AKB A M B Bài 8: Cho đường thẳng CD cắt đường thẳng AB và CA = CB, DA = DB. Chứng minh rằng CD là đường trung trực của đoạn thẳng AB. Giải: Xét hai tam giác ACD và BCD chúng có: CA = CB ; DA = DB (gt) cạnh DC chung nên (c.c.c) từ đó suy ra: ACD = BCD Gọi O là giao điểm của AB và CD. Xét hai tam giác OAC và OBD chúng có: ACD = BCD (c/m trên); CA = CB (gt) cạnh OC chung nên OA = OB và AOC = BOC Mà AOB + BOC = 1800 (c.g.c) AOC = BOC = 900 DC AB Do đó: CD là đường trung trực của đoạn thẳng AB. Tiết 10: Bài 9: Cho tam giác ABC và hai điểm N, M lần lượt là trung điểm của cạnh AC, AB. Trên tia BN lấy điểm B/ sao cho N là trung điểm của BB/. Trên tia CM lấy điểm C/ sao cho M là trung điểm của CC/. Chứng minh: a. B/C/ // BC b. A là trung điểm của B/C/ C/ Giải: a. Xét hai tam giác AB/N và CBN M N ta có: AN = NC; NB = NB/ (gt); ANB/ = BNC (đối đỉnh) Vậy suy ra AB/ = BC B C và B = B/ (so le trong) nên AB/ // BC Chứng minh tương tự ta có: AC/ = BC và AC/ // BC Từ nmột điểm A chỉ kẻ được một đường thẳng duy nhất song song với BC. Vậy AB/ và AC/ trùng nhau nên B/C/ // BC. b. Theo chứng minh trên AB/ = BC, AC/ = BC Suy ra AB/ = AC/ Hai điểm C/ và B/ nằm trên hai nửa mặt phẳng đối nhau bờ là đường thẳng AC Vậy A nằm giữa B/ và C/ nên A là trung điểm của B/C/ Bài 10: Cho tam giác ADE có D = E. Tia phân giác của góc D cắt AE ở điểm M, tia phân giác của góc E cắt AD ở điểm M. So sánh các độ dài DN và EM Hướng dẫn: Chứng minh: (g.c.g) Suy ra: DN = EM (cặp cạnh tương ứng) Bài 11: Cho hình vẽ bên A B trong đó AB // HK; AH // BK Chứng minh: AB = HK; AH = BK. Giải: Kẻ đoạn thẳng AK, AB // HK H K A1 = K1 (so le trong) AH // BK A2 = K2 (so le trong) Do đó: (g.c.g) Suy ra: AB = HK; BK = HK Bài 12: Cho tam giác ABC, D là trung điểm của AB, đường thẳng qua D và song song với BC cắt AC tại E, đường thẳng qua E song song với BC cắt BC ở F, Chứng minh rằng AD = EF AE = EC Giải: a.Nối D với F do DE // BF A EF // BD nên (g.c.g) Suy ra EF = DB Ta lại có: AD = DB suy ra AD = EF D E b.Ta có: AB // EF A = E (đồng vị) AD // EF; DE = FC nên D1 = F1 (cùng bằng B) Suy ra (g.c.g) B F C c. (theo câu b) suy ra AE = EC (cặp cạnh tương ứng) Tiết 11: Bài 13: Cho tam giác ABC D là trung điểm của AB, E là trung điểm của AC vẽ F sao cho E là trung điểm của DF. Chứng minh: A a. DB = CF b. D F E c. DE // BC và DE = BC Giải: B C a. AD = CF Do đó: DB = CF (= AD) b. (câu a) suy ra ADE = F AD // CF (hai góc bằng nhau ở vị trí so le) AB // CF BDC = FCD (so le trong) Do đó: (c.g.c) c. (câu b) Suy ra C1 = D1 DE // BC (so le trong) BC = DF Do đó: DE = DF nên DE = BC Bài 14: Cho góc tù xOy kẻ Oz vuông góc với Ox (Oz nằn giữa õ và Oy. Kẻ Ot nằm giữa Ox và Oy). Trên các tia Ox, Oy, Oz, Ot theo thứ tự lấy các điểm A, B, C, D sao cho OA = OC và OB = OD. Chứng minh hai đường thẳng AD và BC vuông góc với nhau. Giải: Xét tam giác OAD và OCB có t z OA = OC, O1 = O3 (cùng phụ với O2) OD = OB (gt) x C Vậy (c.g.c) A D F A = C mà E1 = E2 (đối đỉnh) Vậy CFE = AOE = 900 AD Bc O B y Bài 15: Cho tam giác ABC trung điểm của BC là M, kẻ AD // BM và AD = BM (M và D khác phía đối với AB) Trung điểm của AB là I. a. Chứng minh ba điểm M, I, D thẳng hàng b. Chứng minh: AM // DB c. Trên tia đối của tia AD lấy điểm AE = AD Chứng minh EC // DB Giải: D A E a. AD // Bm (gt) DAB = ABM có (AD = BM; DAM = ABM (IA = IB) Suy ra DIA = BIM mà DIA + DIB = 1800 nên BIM + DIB = 1800 B M C Suy ra DIM = 1800 Vậy ba điểm D, I, M thẳng hàng b. (IA = IB, DIB = MIB) ID = IM BDM = DMA AM // BD. c. AE // MC EAC = ACM; AE = MC (AC chung) Vậy (c.g.c) Suy ra MAC = ACE AM // CE mà AM // BD Vậy CE // BD Bài 16: Ở hình bên có A1 = C1; A2 = C2. So sánh B và D chỉ ra những cặp đoạn thẳng bằng nhau. Giải: B C Xét tam giác ABC và tam giác CDA chúng có: A2 = C2; C1 = A1 cạnh Ac chung Vậy (g.c.g) A D Suy ra B = D; AB = CD Và BC = DA Bài 17: Cho tam giác ABC các tia phân giác của các góc B và C cắt nhau tại I. Qua I kẻ đường thẳng song song với BC. Gọi giao điểm của đường thẳng này với AB, AC theo thức tự là D và E. Chứng minh rằng DE = BD. Giải: A DI // DC I1 = B1 (so le) BI là đường phân giác của góc B B1 = B2 D I E Suy ra I1 = B2 Tam giác DBI có: I1 = B2 Tam giác DBI cân BD = BI (1) B C Chứng minh tương tự CE = EI (2) Từ (1) và (2): BD + CE = DI + EI = DE Bài 18: Cho tam giác đều ABC lấy điểm D, E, F theo thứ tự thuộc cạnh AB, BC, CA sao cho AD = BE = CF. Chứng minh rằng tam giác DEF là tam giác đều. Giải: A Ta có AB = BC = CA, AD = BE = CF Nên AB - AD = BC - BE = CA - CF D F Hay BD = CE = AF Tam giác ABC đều A = B = C = 600 B E C (c.g.c) thì DF = DE (cặp cạnh tương ứng) (c.g.c) thì DE = EF (cặp cạnh tương ứng) Do đó: DF = DE = EF Vậy tam giác DEF là tam giác đều. TIẾT 12 - 16: DÃY SỐ BẰNG NHAU - LÀM TRÒN A. Mục tiêu: - Nắm vững tính chất của tỉ lệ thức, nhận biết được tỉ lệ thức và các số hạng của tỉ lệ thức. - Vận dụng vào giải toán. - Nắm vững tính chất của dãy tỉ số bằng nhau. - Nắm vững và vân dụng thành thạo các quy ước làm tròn số. B. Chuẩn bị: Bảng phụ ghi đề bài. C. Bài tập: Tiết 12: Bài 1: Tìm hai số x và y biết và x + y = - 2 Giải: Ta có Bài 2: So sánh các số a, b và c biết rằng Giải: Ta có: Bài 3: Tìm các số a, b, c biết rằng và a + 2b - 3c = - 20 Giải: a = 10; b = 15; c = 20 Bài 4: Tìm các số a, b, c biết rằng và a2 - b2 + 2c2 = 108 Giải: Từ đó ta tìm được: a1 = 4; b1 = 6; c1 = 8 A2 = - 4; b2 = - 6; c2 = - 8 Bài 5: Chứng minh rằng nếu a2= bc (với a b, a c) thì Giải: từ a2 = bc Tiết 13: Bài 6: Người ta trả thù lao cho cả ba người thợ là 3.280.000 đồng. Người thứ nhất làm được 96 nông cụ, người thứ hai làm được 120 nông cụ, người thứ ba làm được 112 nông cụ. Hỏi mỗi người nhận được bao nhiêu tiền? Biết rằng số tiền được chia tỉ lệ với số nông cụ mà mỗi người làm được. Giải: Gọi số tiền mà người thứ nhất, thứ hai, thứ ba được nhận lần lượt là x, y, z (đồng). Vì số tiền mà mỗi người được nhận tỉ lệ với số nông cụ của người đó làm được nên ta có: Vậy x = 960.000 (đồng) y = 1.200.000 (đồng) z = 1.120.000 (đồng) Người thứ nhất, người thứ hai, người thứ ba lần lượt nhận được là: 960.000 (đồng); 1.200.000 (đồng); 11.120.000 (đồng) Bài 7: Tổng kết học kỳ lớp 7A có 11 học sinh giỏi, 14 học sinh khá và 25 học sinh trùng bình, không có học sinh kém. Hãy tính tỉ lệ phần trăm mỗi loại học sinh của lớp. Giải: Số học sinh của lớp 7A là: 11 + 14 + 25 = 50 (học sinh) Số học sinh giỏi chiếm: 11 : 50 . 100% = 22% Số học sinh khá chiếm: 14 : 50 . 100% = 28% Số học sinh trung bình chiếm: 25 : 50 . 100% = 50% Bài 8: Tìm x biết a. b. Bài 9: Ba số a, b, c khác nhau và khác số 0 thoả mãn điều kiện Tính giá trị của biểu thức P = Giải: Theo đề bài ta có: thêm 1 vào mỗi phân số ta có: Vì a, b, c là ba số khác nhau và khác 0 nên đẳng thức xảy ra khi và chỉ khi Thay vào P ta được P = = Vậy P = - 3 Tiết 14: Bài 10: Tìm x biết Bài 11: Tỉ số chiều dài và chiều rộng của một hình chữ nhật bằng . Nếu chiều dài hình chữ nhật tăng thêm 3 (đơn vị) thì chiều rộng của hình chữ nhật phải tăng lên mấy đơn vị để tỉ số của hai cạnh không đổi. Giải: Gọi chiều dài và chiều rộng của hình chữ nhật lần lượt là a, b. Khi đó ta có Gọi x (đơn vị) phải thêm vào chiều rộng thì mà 2a = 3b 3b + 6 = 3b + 3x x = 2 Vậy khi thêm vào chiều dài 3 (đơn vị) thì phải thêm vào chiều rộng 2 (đơn vị) thì tỉ số giữa chiều dài và chiều rộng vẫn là . Bài 12: Giá trị (làm tròn đến hàng đơn vị) của biểu thức M = 1,85 x 4,145 là A. 7,6 B. 7 C. 7,66 D. 8 E. Không có các kết quả trên Bài 13: Giá trị (làm tròn đến chữ số thập phân thứ nhất) của biểu thức H = 20,83 : 3,11 là A. 6,6 B. 6,69 C. 6,7 D. 6,71 E. 6,709 Bài 14: Giá trị (làm tròn đến chữ số thập phân thứ hai) của biểu thức N = là A. 3 B. 3,3 C. 3,27 D. 3,28 E. 3,272 Bài 15: Thực hiện phép tính rồi làm tròn đến chữ số thập phân thứ hai. Làm tròn đến chữ số thập phân thứ hai thì được 0,22 Tiết 15: Bài 16: Tìm x, gần đúng chính xác đến chữ số thập phân: 0,6x. 0,(36) = 0,(63) Lấy chính xác đếm 1 chứ số thập phân thì x 2,9 Bài 17: Tính a. 0,4(3) + 0,6(2). 2 b. (= 1) c. Bài 18: Chứng tỏ rằng a. 0,(37) + 0,(62) = 1 Ta có: 0,(37) = và 0,(62) = Do đó: 0,(37) + 0,(62) = + = b. 0,(33) . 3 = 1 Ta có: 0,(33) = Do đó: 0,(33) .3 = Bài 19: Tìm các số hữu tỉ a và b biết rằng hiệu a - b bằng thương a : b và bằng hai lần tổng a + b. Giải: Theo đề bài ra ta có: a - b = 2(a + b) = a : b (1) Từ a - b = 2a + 2b a = - 3b hay a : b = - 3 (2) Từ (1) và (2) suy ra: (3) Từ (3) ta tìm được: a = b = - 1,5- (- 2,5) = 0,75 Vậy hai số a, b cần tìm để lập được a - b = a : b = a( a+ b) là: a = - 2,25; b = 0,75 Bài 20: Có 16 tờ giấy màu loại 2.000 đồng; 5.000 đồng và 10.000 đồng trị giá mỗi loại tiền trên đều bằng nhau. Hỏi mỗi loại có mấy tờ? Giải: Gọi số tờ giấy bạc loại 2.000; 5.000; 10.000 theo thứ tự là x, y, z (x, y, z N) Theo đề bài ta có: x + y + z = 16 và 2000x = 5000y = 10000z Biến đổi: 2000x = 5000y = 10000z Theo tính chất của dãy tỉ số bằng nhau Suy ra x = 2.5 = 10; y = 2.2 = 4; z = 2.1 = 2 Vậy số tờ giấy bạc loại 2.000đ; 5.000đ; 10.000đ theo thứ tự là: 10; 4; 2. TIẾT 16 - 18: ĐỊNH LÝ PITAGO - TRƯỜNG HỢP BẰNG NAHU CỦA HAI TAM GIÁC VUÔNG A. Mục tiêu: - Nắm được định lý Pitago về quan hệ giữa 3 cạnh của tam giác vuông, định lý Pitago đảo. - Biết vận dụng định lý Pitago để tính độ dài của một cạnh tam giác vuông khi biết độ dài của hai cạnh kia. - Biết vận dụng định lý đảo của định lý Pitago để nhận biết một tam giác vuông. - Nắm được các trường hợp bằng nhau của hai tam giác vuông, vận dụng định lý Pitago để chứng minh trường hợp cạnh huyền - cạnh góc vuông của hai tam giác vuông. - Vận dụng để chứng minh các độan thẳng bằng nhau, các góc bằng nhau. - Rèn luyện khả năng phân tích, tìm cách giải và trình bày bài toán chứng minh hình học. B. Chuẩn bị: Bảng phụ ghi đề bài C. Bài tập Tiết 16: Bài 1: Trên hình vẽ bên cho biết A D AD DC; DC BC; AB = 13cm AC = 15cm; DC = 12cm 13 15 12 Tính độ dài đoạn thẳng BC. Giải: Vì AH BC (H BC) B H C AH BC; DC BC (gt) AH // DC mà HAC và DCA so le trong. Do đó: HAC = DCA Chứng minh tương tự cũng có: ACH = DAC Xét tam giác AHC và tam giác CDA có HAC = DCA; AC cạnh chung; ACH = DAC Do đó: (g.c.g) AH = DC Mà DC = 12cm (gt) Do đó: AH = 12cm (1) Tam giác vuông HAB vuông ở H theo định lý Pitago ta có: AH2 +BH2 = AB2 BH2 = AB2 - AH2 = 132 - 122 = 55 = 25 BH = 5 (cm) (2) Tam giác vuông HAC vuông ở H theo định lý Pitago ta có: AH2 + HC2 = AC2 HC2 = AC2 - AH2 = 152 - 122 = 91 = 92 HC = 9 (cm) Do đó: BC = BH + HC = 5 + 9 = 14 (cm) Bài 2: Cho tam giác vuông cân tại đỉnh A. MA = 2 cm; MB = 3 cm; góc AMC = 1350. Tính độ dài đoạn thẳng MC. A Giải: Trên nửa mặt phẳng bời Am không chứa điểm D. Dựng tam giác ADM vuông cân taih đỉnh A. M Ta có: AD = MA = 2 cm AMD = 450; DMC = AMC - AMD = 900 B C Xét tam giác ADC và AMB có: AD = AM D DAC = MAB (hai góc cùng phụ nhau với A góc CAM); AC = AB (gt) Do đó: (c.g.c) DC = MB Tam giác vuông AMD vuông ở A D nên MD2 = MA2 + MC2 (pitago) Do đó: MD2 = 22 + 22 = 8 B C Tam giác MDC vuông ở M nên DC2 = MD2 + MC2 (Pitago) Do đó: 32 = 8 + MC2 MC2 = 9 - 8 = 1 MC = 1 Bài 3: Tam giác ABC có phải là tam giác vuông hay không nếu các cạnh AB; AC; BC tỉ lệ với a. 9; 12 và 15 b. 3; 2,4 và 1,8 c. 4; 6 và 7 d. 4 ; 4 và 4 Giải: a. AB2 + AC2 = 81k2 + 144k2 = 225k2 = BC2 Vậy tam giác ABC vuông ở A. b. AB2 + AC2 = 16k2 + 36k2 = 52k2 49k2 = BC2 Vậy tam giác ABC không là tam giác vuông. c. Tương tự tam giác ABC vuông ở C (C = 900) d. Làm tương tự tam giác ABC vuông cân (B = 900) Tiết 17: Bài 4: Cho tam giác vuông ABC (A = 900), kẻ AH BC Chứng minh: AB2 + CH2 = AC2 + BH2 Giải: A Áp dụng định lý Pitago vào các tam giác vuông Tam giác ABH có H = 900 AB2 = AH2 + HB2 AB2 - HB2 = AH2 có H = 900 AC2 = AH2 + HC2 AC2 - HC2 = AH2 AB2 - HB2 = AC2 - HC2 B H C AB2 + CH2 = AC2 + BH2 Bài 5: Cho tam giác ABC có A là góc tù. Trong các cạnh của tam giác ABC thì cạnh nào là cạnh lớn nhất? A Giải: * Kẻ AD AB tia AD nằm giữa 2 tia AB và AC BD < BC (1) Xét tam giác ABD vuông ở A BD2 = AB2 + AD2 AB2 < BD2 AB < BD (2) B E D C Từ (1) và (2) suy ra: AB < BC * Kẻ AE AC tia AE nằm giữa hai tia AB và AC EC < BC (3) Xét tam giác AEC vuông ở A EC2 = AE2 + AC2 AC2 < EC2 hay AC < EC (4) Từ (3) và (4) suy ra: AC < BC Vậy cạnh lớn nhất là BC. Bài 6: Cho tam giác ABC, cạnh đáy BC. Từ B kẻ đường vuông góc với AB và từ C kẻ đường vuông góc với AC. Hai đường này cắt nhau tại M. Chứng minh rằng a. b. AM là đường trung trực của đoạn thẳng BC. Giải: A a. Hai tam giác vuông ABM và ACM bằng nhau vì cạnh huyền AM chung AB = AC (gt) b. Do A1 = A2 B C Gọi I là giao điểm của AM và BC Xét hai tam giác AIB và AIC M A1 = A2 (c/m trên); AB = AC (Vì tam giác ABc cân ở A); AI chung nên (c.c.c) Suy ra IB - IC; AIB = AIC mà AIB + AIC = 1800 (2 góc kề bù nhau) Suy ra AIB = AIC = 900 Vậy AM BC tại trung điểm I của đoạn thẳng BC nên AM là đường trung trực của đoạn thẳng BC. Bài 7: a. Cho tam giác ABC cân tại A, kẻ AD vuông góc với BC. Chứng minh rằng AD là tia phân giác của góc A. b. Cho tam giác ABC cân tại A, kẻ BD vuông góc với AC, kẻ CE vuông góc với AB. Gọi K là giao điểm của BD và CE. Chứng minh rằng AK là tia phân giác của góc A. Giải: A a. Xét hai tam giác vuông CDB và ADC có canh AD là cạnh chung; AB = AC (cạnh huyền - cạnh góc vuông) BAD = CAD (cặp góc tương ứng) Do đó: AD là tia phân giác của góc A B D C b. Hướng dẫn A Chứng minh (cạnh huyền - góc nhọn) AD = AE (cặp cạnh tương ứng) (cạnh huyền - cạnh góc vuông) E D A1 = A2 Do đó Ak là tia phan giác của góc K. B C Tiết 18: Bài 8: Cho tam giác ABC có AB < AC. Tia phân giác của góc A cắt đường trung trực của BC tại I. Kẻ IH vuông góc với đường thẳng AB, kẻ IK vuông góc với đường thẳng AC. Chứng minh rằng BH = CK A Giải: Gọi M là trung điểm của BC ta có: K (c.g.c) B M Vì BM = CM; IM chung; M1 = M2 C IB = IC (cặp góc tương ứng) H (cạnh huyền - góc nhọn) I IH - IK (cạnh huyền - cạnh góc vuông) BH = CK. Bài 9: Cho tam giác vuông ABC vuông tại A có và BC = 15cm. Tìm các độ dài AB; AC B Giải: Theo đề ra ta có: Theo tính chất dãy tỉ số bằng nhau A C và định lý Pitago ta có: Suy ra: AB2 = 9.9 = 92 AB = 9 cm AC2 = 16.9 = (4.3)2 = 122 AC = 12 cm Vậy hai cạnh cần tìm AB = 9cm; AC = 12cm Bài 10: Chứng minh rằng tam giác ABC vẽ trên giấy ô vuông ở hình bên là tam giác vuông cân. Giải: B Gọi độ dài cạnh của mỗi ô vuông là 1 Theo định lý Pitago ta có: AB2 = 12 + 22 = 1 + 4 = 5 C BC2 = 12 + 22 = 1 + 4 = 5 A AC2 = 12 + 32 = 1 + 9 = 10 Do AB2 = BC2 nên AC = AB Do AB2 + BC2 = AC2 nên ABC = 900 Vậy tam giác ABC vuông cân tại B. Bài 11: Cho tam giác vuông ABC (A = 900). Chứng minh rằng a. Nếu AB = BC thì C = 300 C b. Nếu C = 300 thì AB = BC Giải: Trên tia đối của tia AB đặt AD = AB Nối CD thì ta có: (c.g.c) CB = CD (1) B A D a. Nếu AB = BC và AB = AD = BD Thì BC = BD (2) Từ (1) và (2) suy ra CB = BD Vậy tam giác BCD đều BCA = ACD = BCD = b. CB = CD Tam giác CBD cân Nếu BCA = 300; BCD = 60=0 suy ra tam giác BCD đều BD = BC 2AB = BC AB = BC Bài 12: Cho tam giác ABC, kẻ BE AC và CF AB. Biết BE = CF = 8cm. độ dài các đoạn thẳng BF và BC tỉ lệ với 3 và 5. a. Chứng minh tam giác ABC là tam giác cân b. Tính độ dài cạnh đáy BC c. BE và CF cắt nhao tại O. Nối OA và EF. Chứng minh đường thẳng AO là trung trực của đoạn thẳng EF. A Giải: a. vì E = F = 900 BE = CF, Bc cạnh chung E F FBC = ECB tam giác ABC cân O b. Theo đề bài các đoạn thẳng BF và BC B C tỉ lệ với 3 và 5 Ta có: cm c. Tam giác ABC cân AB = AC mà BF = EC () AF = AE (cạnh huyền - cạnh góc vuông) FAO = EAO (Vì AF = AE ; FAI = EAI) IF = IE (1) và FIA = EIA mà FIA + EIA = 1800 nên FIA = EIA = 900 AI EF (2) Từ (1) và (2) suy ra AO là trung trực của đoạn thẳng EF. TIẾT 19; 20: MỘT SỐ BÀI TOÁN VỀ ĐẠI LƯỢNG TỈ LỆ NGHỊCH, TỈ LỆ THUẬN A. Mục tiêu: - Hiểu được công thức đặc trưng của hai đại lượng tỉ lệ thuận, của hai đại lượng tỉ lệ nghịch. - Biết vận dụng các công thức và tính chất để giải được các bài toán cơ bản về hai đại lượng tỉ lệ thuận, hai đại lượng tỉ lệ nghịch. B. Chuẩn bị: Bảng phụ ghi đề bài C. Bài tập: Tiết 19: Bài 1: a. Biết tỉ lệ thuân với x theo hệ số tỉ lệ k, x tỉ lệ thuận với z theo hệ số tỉ lệ m (k0; m 0). Hỏi z có tỉ lệ thuận với y không? Hệ số tỉ lệ? b. Biết các cạnh của một tam giác tỉ lệ với 2, 3, 4 và chu vi của nó là 45cm. Tính các cạnh của tam giác đó. Giải: a. y tỉ lệ thuận với x theo hệ số tỉ lệ k thì x tỉ lệ thuận với y theo hệ số tỉ lệ nên x = y (1) x tỉ lệ thuận với z theo hệ số tỉ lệ m thì x tỉ lệ thuận với x theo hệ số tỉ lệ nên z = x (2) Từ (1) và (2) suy ra: z = ..y = nên z tỉ lệ thuận với y, hệ số tỉ lệ là b. Gọi các cạnh của tam giác lần lượt là a, b, c Theo đề bài ra ta có: và a + b + c = 45cm Áp dụng tính chất của dãy tỉ số bằng nhau Vậy chiều dài của các cạnh lần lượt là 10cm, 15cm, 20cm Bài 2: Một hình chữ nhật có chiều rộng bằng nửa chiều dài. Viết công thức biểu thị sự phụ thuộc giữa chu vi C của hình chữ nhật và chiều rộng x của nó. Giải: Chiều dài hình chữ nhật là 2x Chu vi hình chữ nhật là: C = (x + 2x) . 2 = 6x Do đó trong trường hợp này chu vi hình chữ nhật tỉ lệ thuận với chiều rộng của nó. Bài 3: Học sinh của 3 lớp 6 cần phải trồng và chăm sóc 24 cây bàng. Lớp 6A có 32 học sinh; Lớp 6B có 28 học sinh; Lớp 6C có 36 học sinh. Hỏi mỗi lớp cần phải trồng và chăm sóc bao nhiêu cây bàng, biết rằng số cây bàng tỉ lệ với số học sinh. Giải: Gọi số cây bàng phải trồng và chăm sóc của lớp 6A; 6B; 6C lần lượt là x, y, z. Vậy x, y, z tỉ lệ thuận với 32, 28, 36 nên ta có: Do đó số cây bàng mỗi lớp phải trồng và chăm sóc là: Lớp 6A: (cây) Lớp 6B: (cây) Lớp 6C: (cây) Bài 4: Lớp 7A 1giờ 20 phút trồng được 80 cây. Hỏi sau 2 giờ lớp 7A trồng được bao nhiêu cây. Giải: Biết 1giờ 20 phút = 80 phút trồng được 80 cây 2 giờ = 120 phút do đó 120 phút trồng được x cây x = (cây) Vậy sau 2 giờ lớp 7A trồng được 1
Tài liệu đính kèm:
- giao_an_tu_chon_toan_7_chuong_trinh_ca_nam.doc